QuantiChrom™ Heme Assay Kit
Protocol SDS  Printed Protocols and SDSs are not provided with kits.

Application
For quantitative determination of heme and evaluation of drug effects on heme metabolism.

Key Features
Sensitive and accurate. Linear detection range 0.6 - 125 μM heme in 96-well plate assay.

Simple and high-throughput. The "mix-and-read" procedure involves addition of a single working reagent and reading the optical density. Can be readily automated as a high-throughput assay in 96-well plates for thousands of samples per day.

Safety. Reagents are non-toxic.

Versatility. Assays can be executed in 96-well plate or cuvet.

Method
OD400nm

Samples
Blood, serum, plasma, urine etc

Species
All

Procedure
5 min

Size
250 tests

Detection Limit
0.6 μM

Shelf Life
12 months

More Details
Heme is one important member of the porphyrin family. It is synthesized in both mitochondria and cytoplasm, and is a key prosthetic group for various essential proteins such as hemoglobin, cytochromes, catalases and peroxidases. Heme determination is widely practiced by researchers of various blood diseases. Simple, direct and automation-ready procedures for measuring heme concentration are becoming popular in Research and Drug Discovery. BioAssay Systems QuantiChrom™ Heme Assay Kit is based on an improved aqueous alkaline solution method, in which the heme is converted into a uniform colored form. The intensity of color, measured at 400 nm, is directly proportional to the heme concentration in the sample. The optimized formulation substantially reduces interference by substances in the raw samples and exhibits high sensitivity.

1. Does the Heme Assay kit DIHM-250 detect heme bound to hemoglobin or only heme alone?



The heme assay detects the total heme content in the sample, including the heme in hemoglobin.

2. Does the heme assay detect β-hematin (malaria pigment) / protoporphyrin?



We have not specifically tested it, but it is highly likely that our heme assay will detect &beta:-hematin and protophorphyrin with the same efficiency as heme, and that it is not possible to distinguish between the variants.

For more detailed product information and questions, please feel free to Contact Us. Or for more general information regarding our assays, please refer to our General Questions
Aggarwal, S., Jilling, T., Doran, S., Ahmad, I., Eagen, J. E., Gu, S. & Patel, R. P. (2019). Phosgene Inhalation Causes Hemolysis and Acute Lung Injury. Toxicology Letters. 521724. Assay: Heme in mice blood.

Keleku-Lukwete, N., Suzuki, M., Panda, H., Otsuki, A., Katsuoka, F., Saito, R. & Yamamoto, M. (2019). Nrf2 activation in myeloid cells and endothelial cells differentially mitigates sickle cell disease pathology in mice. Blood advances, 3(8), 1285-1297. Assay: Heme in mice plasma.

Li, X., Wang, X., & Snyder, M. P. (2019). Metformin affects heme function as a possible mechanism of action. G3: Genes, Genomes, Genetics, 9(2), 513-522. Assay: Heme in yeast cells.

Belcher, J. D., Chen, C., Nguyen, J., Abdulla, F., Zhang, P., Nguyen, H. & Nath, K. A. (2018). Haptoglobin and hemopexin inhibit vaso-occlusion and inflammation in murine sickle cell disease: Role of heme oxygenase-1 induction. PloS one, 13(4), e0196455. Assay: Heme in mice plasma.

Cruz, L. A., Barral-Netto, M., & Andrade, B. B. (2018). Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity. PLoS neglected tropical diseases, 12(3), e0006306. Assay: Heme in human blood.

Cueno, M. E., & Ochiai, K. (2018). Gingival periodontal disease (PD) level-butyric acid affects the systemic blood and brain organ: insights into the systemic inflammation of periodontal disease. Frontiers in immunology 9:1158. Assay: Heme in wistar rat blood.

Mooney, J. P., Barry, A., Goncalves, B. P., Tiono, A. B., Awandu, S. S., Grignard, L. & Riley, E. M. (2018). Haemolysis and haem oxygenase-1 induction during persistent "asymptomatic" malaria infection in Burkinabe children. Malaria journal, 17(1), 253. Assay: Heme in human plasma.

Santiago, R. P., Guarda, C. C., Figueiredo, C. V. B., Fiuza, L. M., Aleluia, M. M., Adanho, C. S. A. & Nascimento, V. M. L. (2018). Serum haptoglobin and hemopexin levels are depleted in pediatric sickle cell disease patients. Blood Cells Mol Dis. 72:34-36. Assay: Heme in human blood.

Abhishek, S., Gupta, A. K., & Singh, A. (2017). Kinetic Models Demonstrate Ability of Staphylococcus aureus to Uptake Heme from Beta vulgaris Proteins. Journal of Pure and Applied Microbiology, 11(4), 1713-1719. Assay: Heme in beetroot juice.

Dalko, E., Tchitchek, N., Pays, L., Herbert, F., Cazenave, P. A., Ravindran, B. & Pied, S. (2016). Erythropoietin levels increase during cerebral malaria and correlate with heme, interleukin-10 and tumor necrosis factor-alpha in India. PloS one, 11(7), e0158420. Assay: Heme in human plasma.

Luz, N. F., Balaji, S., Okuda, K., Barreto, A. S., Bertin, J., Gough, P. J. & Chan, F. K. M. (2016). RIPK1 and PGAM5 control Leishmania replication through distinct mechanisms. The Journal of Immunology, 196(12), 5056-5063. Assay: Heme in human plasma.

Ndisang JF, et al (2010). Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology 151(2):549-60. Assay: Heme in rat plasma.

Ndisang JF, Jadhav A (2010). The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension. American Journal of Physiolgy, Regululatory Integrative and Comparative Physiology. 298(1):R211-23. Assay: Heme in rat tissue.

Aldag C et al (2009). Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine. PNAS 106(14):5481-6. Assay: Heme in bacteria p450 enzymes.

Huang ML et al (2009). Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. PNAS 106(38):16381-6. Assay: Heme in mouse heart.

Zwart SR, et al (2009). Body iron stores and oxidative damage in humans increased during and after a 10- to 12-day undersea dive. J Nutr. 139(1):90-5. Assay: Heme in human plasma.

Pamplona, A. et al (2007). Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nature Med. 13(6): 703-710. Assay: Heme in mouse tissue.

To find more recent publications, please click here.
Please inquire or request assay service or call 1-510-782-9988 x 2.
Buy Now!!!
QuantiChrom™ Heme Assay Kit
Catalog No: DIHM-250
Price: $309    Qty:
For orders of 10 or more kits, please call 1-510-7829988x1 or email us for best pricing and/or bulk order.

Shipping: RT
Shipment: Fedex Service
Delivery: 1-2 days (US), 3-6 days (Intl) Storage: 4°C

Related Products


Why BioAssay Systems?

Expert Technical Support
Technical support provided by the very scientists that develop the assays.

Quality and User-friendly
Products are extensively tested and validated prior to release so researchers need little-to-no time for assay optimization.

Competitive Prices
Because we develop and manufacture the products, our prices are lower than competitors on the market

Expansive Catalogue
With over 200 different products, acquire all your assay kit needs in one order.

Trusted Globally
Products used by clients worldwide with distributors in over 60 countries.


BioAssay Systems is committed to producing innovative, high-quality and cost-effective products
and to providing expert technical service to our valued customers