Acid Phosphatase Assay Buffer:

Acid Phosphatase activity determination in biological samples (e.g. plasma, serum, cell lysate, tissue samples.)

KIT CONTENTS (100 TESTS IN 96-WELL PLATES)

Assay Buffer: 12 mL

pNPP Liquid: 280 µL

Stop Reagent: 12 mL

Standard: 1 mL

Storage conditions: The kit is shipped at room temperature. Store the Standard and stop reagent at 4°C and all other reagents at -20°C. Shelf life: 6 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

PROCEDURES

This assay is based on a kinetic reaction. To ensure identical incubation time, addition of Substrate and Stop Reagent to samples should be quick, and mixing should be brief but thorough. Use of a multi-channel pipettor is recommended.

Sample Preparation: Serum and plasma should be diluted 2-5 fold.

Tissue: Prior to dissection, rinse tissue in Tris buffered saline (pH 7.4) to remove blood. Homogenize tissue (50 mg) in ~200 µL 50 mM Tris buffer (pH 7.5). Centrifuge at 14,000 x g for 10 min at 4°C. Remove supernatant for assay.

Cell Lysate: Collect cells by centrifugation at 2,000 x g for 5 min at 4°C. For adherent cells, do not harvest cells using proteolytic enzymes; rather use a rubber policeman. Homogenize or sonicate cells in an appropriate volume of cold 50 mM Tris buffer (pH 7.5), approximately one million cells per mL. Centrifuge at 14,000 x g for 10 min at 4°C. Remove supernatant for assay.

All samples can be stored at –80 to –20°C for at least one month.

Reagent Preparation: Equilibrate all components to desired reaction temperature (e.g. 25°C or 37°C).

Standard Preparation:

Mix 20 µL of 12.5 mM Nitrophenol standard with 230 µL of dH2O to make 1000 µM Premix.

<table>
<thead>
<tr>
<th>No</th>
<th>Premix + dH2O</th>
<th>Vol (µL)</th>
<th>Nitrophenol (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 µL + 0 µL</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>60 µL + 40 µL</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>30 µL + 70 µL</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>0 µL + 100 µL</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Reaction Preparation:

1. Transfer 20 µL of each sample into separate wells. Transfer 20 µL of each standard (OD_STD) into wells of a clear flat bottom 96-well plate.
2. The Working Reagent is prepared by mixing together for each well 85 µL of assay buffer and 2 µL of pNP Liquid. Add 80 µL of Working Reagent to all standard and sample wells. Tap plate briefly to mix.
3. Incubate at 25°C or desired temperature for 30 minutes. Add 50 µL of Stop Reagent to each well. Tap plate briefly to mix.
4. Read OD405nm.

Calculation

Subtract blank OD (water, #4) from the standard OD values and plot the ΔOD against standard concentrations. Determine the Slope and use the following equation to calculate Acid Phosphatase activity.

\[
\text{ACP Activity} = \left(\frac{\text{OD}_{\text{SAMPLE}} - \text{OD}_{\text{BLANK}}}{\text{Time} \times \text{Slope}} \right) \times n \quad (U/L)
\]

where OD_SAMPLE is the OD405nm value for each sample and OD_BLANK is the OD405nm value of the water (standard #4) or the sample blank if one was used. Slope is the slope of the linear regression fit of the standard points and Time is the reaction time (30 min). n is the dilution factor.

Unit definition: 1 Unit (U) of ACP will catalyze the conversion of 1 µmole of p-Nitrophenyl phosphate to p-Nitrophenol and phosphate per min at 25°C and pH 5.3.

Note: If sample ACP activity exceeds 60 U/L, either use a shorter reaction time or dilute samples in water and repeat the assay. For samples with ACP activity < 1 U/L, the incubation time can be extended up to 60 minutes for greater sensitivity.

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipetting devices and accessories (e.g. multi-channel pipettor), clear flat-bottom 96-well plates (e.g. VWR cat# 82050-760), centrifuge tubes and plate reader.

LITERATURE

